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Background I

The recent increase in availability of low cost small unmanned
aircraft system (sUAS) has led to new opportunities

Sensors are becoming smaller and less expensive while
providing more computational power

Many open source contributions in software and hardware
originating from the hobbyist radio control (RC) market

Kory Olney 3/50



| Mechanical Engineering

Introduction Methodology Results Conclusion

Background II - sUAS

Useful in applications where humans cannot safely go

Use cases for sUAS

Industrial inspection

Shipping and delivery

Agriculture

Cinematography

Military

And many more...
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Background III - Source Localization

Applied throughout the acoustic and electromagnetic
spectrum

Beamforming

Wifi, GPS

Radio communications

Seismology

Acoustic range

Speaker localization

Critical infrastructure security

Military and law enforcement
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Objectives

Construct a low-cost prototype sUAS with a payload capacity
of at least 4 lb

Construct a microphone array that can addresses constraints
of the sUAS problem

Develop a data acquisition unit with DSP methods to perform
direction of arrival (DOA) estimation in real time

Kory Olney 6/50



| Mechanical Engineering

Introduction Methodology Results Conclusion

Contributions

Developed code for 8 channel synchronous sampling

Designed and fabricated prototype direction finding module

Designed and fabricated a sUAS that can host the module

Applied DSP methods to the acoustic noise and direction of
arrival problems
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Mathematical Models

Signal Model
x1(t) = s1(t) + n1(t)

where x1(t), s1(t), and n1(t) are real, stationary random
processes and s1(t) is assumed to be uncorrelated with n1(t)

E{n1(t)} = 0
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Array Time Difference of Arrival (TDOA) Model

x1(t) = s1(t) + n1(t)

x2(t) = s1(t − D1) + n2(t)

...

xm(t) = s1(t − Dm) + nm(t)

D1 through Dm are the
time of arrival delays
between channels which
are to be estimated
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Cross Correlation - Continuous

Rxy (τ) =

∫ ∞
−∞

x∗(t)y(t + τ)dt

Rxy (τ) =
1

T

∫ T

0
x(t)y(t + τ)dt

Rx1x2(τ) = Rs1s1(τ + D) + Rn1n2(τ)

* denotes complex
conjugate

T represents the
observation interval
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Cross Correlation - Discrete

Rxy [D] =
∞∑

n=−∞
x∗[n]y [n + D]

R̂xy (r∆t) =
1

N − r

N−r∑
n=1

xnyn+r

r∆t ≈ τ
r = 0, 1, 2, ...,m with
m < N

r represents the index of
the sequence
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Cross Power Spectrum

Sxy (f ) =

∫ ∞
−∞

Rxy (t)e−j2πftdt Fourier transform of the
cross correlation
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Generalized Cross Correlation
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Figure: Filter Model

Sy1y2(f ) = H1(f )H2
∗(f )Sx1x2(f )
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Generalized Cross Correlation - PHAT

ψp(f ) =
1

|Sx1x2(f )|
= H1(f )H∗2 (f )

R̂y1y2(τ) =

∫ ∞
−∞

ψp(f )Ŝx1x2(f )e j2πftdf

Phase transform (PHAT)

Weighting function applied
for whitening the signals

Normalizes cross power
spectrum

Sharpens cross correlation
for better resolution in
time domain

y1 and y2 are signals x1
and x2 respectively, after
filtering

Kory Olney 14/50



| Mechanical Engineering

Introduction Methodology Results Conclusion

Discrete Implementation

hj =
N−1∑
b=0

y1by2j+b

for j = −(N − 1),−(N − 2), ...,−1, 0, 1, ..., (M − 2), (M − 1)

R̂y1y2(i) = hi−(N−1)

τ̂y1y2 = argmax
i

R̂y1y2(i)

N is the number of elements in sequence y1

M is the number of elements in sequence y2

τ̂ is the estimate of time delay
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Mic Position and DOA Vector

Pi =

xiyi
zi



K =

kxky
kz

 =

sinθcosφsinθsinφ
cosθ


where Pi is the position of the ith microphone in the array
with respect to an arbitrarily defined reference

K is the DOA vector
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TDOA Between Two Channels

τi ,j =
1

c
[(xj − xi )sinθcosφ+ (yj − yi )sinθsinφ+ (zj − zi )cosθ]

τi ,j =
1

c
[Pj − Pi]K

Given by projecting the position difference vector onto the
DOA

Assumes wavefront propagates as a plane
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Reference Free Position Difference Matrix

S = [P2 − P1, ...,PN − P1,P3 − P2, ...,PN − PN−1]T ∈ R
N(N−1)

2
×3

Calculating the positioning difference between each
combination of microphones in the array

N is the number of sensors in the array
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Reference Free TDOA Vector

~τ = [τ2,1, ..., τN,1, τ3,2, ..., τN,2, ..., τN,N−1]T ∈ R
N(N−1)

2
×1

TDOA between all combinations of microphones in the array
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TDOA Equation set

τ̂ =
1

ĉ
SK̂

ĉ is the estimate of the speed of sound

Leads to a linear least squares solution

K̂ = −ĉ(STS)−1ST τ̂
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Elevation and Azimuth Estimates

φ̂ = tan−1(
k̂y

k̂x
)

θ̂ = tan−1(

√
k̂2x + k̂2y

k̂z
)

Azimuth

Elevation
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Hardware Overview

Localization module

Microphones

Array Design

TI ADS1278

NI myRIO

Interface Board

sUAS Design

Frame

Powertrain

Autopilot

Tx Rx
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Hardware - Localization Module - Microphones

Figure: Adafruit Silicon MEMS
Microphone Breakout-SPW2430

Low cost, lightweight,
MEMS breakout board

Amplifies signals to line
level, with max 1V peak
to peak

Flat frequency response
from 100Hz to 10kHz

3 wire configuration: 3.3V
supply, ground, DC output

0.67V DC bias
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Hardware - Localization Module - Array Design

Figure: 8 Channel Microphone
Array Design

8 analog microphones in
spherical arrangement

3D printed and carbon
fiber frame

Radius of 11.25 in

Single 24 pin female
ribbon cable
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Hardware - Localization Module - TI ADS1278

Figure: ADS1278 EVM-PDK
ADC

Synchronous sampling of 8
analog channels

SPI output

∆Σ configuration -
Oversampling

Onboard or supplied
digital clock

Up to 144 ksps/channel

Built in 1st-order analog
lowpass filters
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Hardware - Localization Module - NI myRIO

Figure: National Instruments
myRIO Embedded System

Reconfigurable Input
Output - RIO

Xilinx FPGA and CPU

40 MHz onboard clock
that can simulate higher
rates

Built-in accelerometer

34 pin MXP connections

6V to 16V power supply

Simple functionality with
LabVIEW
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Hardware - Localization Module - Interface Board

Figure: Top of Interface Board
with 34 and 24 pin Connectors

Interface between
ADS1278, myRIO, and
microphones

Custom designed printed
circuit board (PCB)

Power: 3.3V, 5V, from
myRIO and 1.8V regulator
onboard
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Hardware - sUAS Design - sUAV Frame

Figure: sUAV Hexacopter Frame

Turnigy Talon from Hobby
King

Carbon fiber frame except
for assembly hardware and
motor mounts

Boom radius of 12.5 in
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Hardware - sUAS Design - Powertrain

Figure: KDE 2315XF Motor

Brushless DC motor

2050 RPM/V - 30340
Max RPM at 14.8V

Motor torque 0.0035
ft-lbs/A

2.66A at 14.8V

Theoretical max thrust
with 8 in propellers 3.5lb
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Hardware - sUAS Design - Autopilot

Figure: Pixhawk 2.1

Open source hardware
design

Designed specifically to
function with Ardupilot -
open source software

Large user base for
support and debugging

Redundant IMUs

Intel Edison port
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Hardware - sUAS Design - Tx Rx

Figure: Taranis QX7 Transmitter

16 Channels

Haptic vibration feedback
system

Runs on OpenTX

Reciever signal strength
indicator

Real time flight data
logging to microSD
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Hardware - sUAS Design - Tx Rx

Figure: FrSKY X8R 2.4GHz
Receiver

8 channel telemetry
receiver with smart bus

Full duplex

Daisy chainable for 16
channels
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System Overview
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Figure: General Data Flow Through System
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Field Programmable Gate Array

Figure: FPGA Top Level

State machine

SCTL at 48MHz

24MHz modulator clock
to ADC

8 channels of 24 bits each
at 93.75 kHz

U32 to I32

Target Scope FIFO to
DMA FIFO
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CPU I

Figure: RT Top Level
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CPU II

Producer-consumer loop

Monitors single channel for impulse detection

Trigger sends array to local FIFO for DOA estimate

User defined bandstop filter and trigger threshold
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Data Collection

Recordings of 9 different calibers at Pasco County Range

Microphones were approximately 29 feet from the source

5 shots of each caliber were recorded with only ambient noise

Shots were then recorded with the sUAS motors operating
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Gunshot Waveform 9mm
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Figure: 9mm Time Domain

Shifted from DC Bias

≈ 0.07V P2P

≈ 3 ms in length

Kory Olney 38/50



| Mechanical Engineering

Introduction Methodology Results Conclusion

Dual Channel 9mm
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Figure: Comparing 2 CH 9mm

Channels 1 and 4

≈ 0.35 ms TDOA
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Propeller Noise
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Figure: All Channels of Props

Channels 1 through 8

Varying DC bias between
channels

≈ 0.02 V P2P

Recorded at 50 % throttle
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Propeller Noise Filtering
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Figure: Frequency Plot of Prop Noise
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9mm FFT
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Figure: Extended Band FFT
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Frequency Response
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Figure: Frequency Response of Bandstop Filter

Finite impulse response (FIR)
Cutoff from 500Hz to 1.9kHz
Linear phase response
Maximum 511 taps
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System Weight

Component Weight(g)
sUAV 1520

Battery 416

Mic Array 200
My PCB 45

ADC 36
myRIO 235
Housing 201

Module: 717
Total: 2653
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Impulse Detection Reliability

Currently cross correlating each new frame against a template
wavelet

Normalized, windowed, and filtered

A trigger for an impulse detection is set to true if the max
value of the cross correlation exceeds a user defined threshold

False negatives and false positives are a significant concern for
this system
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Estimation Error

Initial tests show that the error for elevation and azimuth is
approximately +/- 7 %

Recently simulated with clapping and snapping

Future experiment soon to study the localization error

Demonstration...
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Summary

Successfully demonstrated that a lightweight acoustic source
localization module can function in real time onboard a sUAV
while estimating both elevation and azimuth without motors
operating

GCC-PHAT method is sufficient for TDOA estimates in
modestly noisy environments

Noise characteristics of the current sUAS significantly degrade
signal quality

Higher quality mics are necessary for long range estimates

Low cost solution to serve a variety of potential engineering
challenges

Driver for ADS1278 has potential for a variety of applications

Many improvements can be made
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Future Work

Perform a thorough evaluation of the system performance
under varying conditions to determine the maximum effective
range for accurate DOA estimation

Improve the digital signal processing techniques to be more
robust and better tuned for specific applications

Acoustic classification i.e. caliber recognition

Incorporate a camera and machine vision techniques to
attempt at precisely identifying the source of an acoustic event

Develop a single PCB that is smaller, lighter, and performs all
of the necessary computations internally

Create a module that is designed specifically to comply with a
COTS sUAS
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Questions?

Thanks for your attention!

koryolney@mail.usf.edu
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